Pippins Primary School Curriculum Overview

Subject: Science

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Topic:	Topic:	Topic:		Topic:	Topic:
Everyday Materials	Human Senses	Seasonal Changes		Plant parts	Animal Parts
Concept:	Concept:	Concept:		Concept:	Concept:
Properties of Materials	Human Body	Seasons		Living things	Living things
Skills and Knowledge:	Skills and Knowledge:	Skills and Knowledge:		Skills and Knowledge:	Skills and Knowledge:
Ask simple scientific	Observe objects,			With support, use	With support, gather
questions.	materials, living things	Recall and know about the	ne four seasons.	simple equipment to	and record simple data
	and changes over time,			measure and make	in a range of ways
Question words	sorting and grouping	Go out into the local env	ironment to experience	observations.	(data tables, diagrams,
include what, why,	them based on their	the weather.			Venn diagrams).
how, when, who and	features.			Talk about what they	
which.		Examine the difference b	etween deciduous and	have done and say,	Data can be recorded
	Objects, materials and	evergreen trees, observi	ng trees in the local	with help, what they	and displayed in
With support, use	living things can be	environment.		think they have found	different ways,
simple equipment to	looked at and			out.	including tables,
measure and make	compared.	Understand how the sea	sons affect animals and		pictograms and
observations.		make comparisons betwo	een them.	The results are	drawings.
	Talk about what they			information that has	
Simple equipment is	have done and say, with	Find out what the weath	er is, what types of	been found out from	Identify, compare,
used to take	help, what they think	weather there are and w	hat causes the weather.	an investigation.	group and sort a
measurements and	they have found out.				variety of common
observations.		Understand what the we		Identify, compare,	animals, including fish,
	The results are	season and discover why	the lengths of daytime	group and sort a	amphibians, reptiles,
With support, follow	information that has	and night time change in	different seasons.	variety of common wild	birds, invertebrates
instructions to	been found out from an			and garden plants,	and mammals, based
perform simple tests	investigation.	Learn about the Sun and	how to protect our skin	including deciduous	on observable features.
and begin to talk		from the Sun's rays.		and evergreen trees,	Animals are living
about what they might	Observe the local			based on observable	things.
do or what might	environment		Observe and measure the wind, recording data		
happen.	throughout the year	on a bar chart.			Animals can be sorted
	and ask and answer			Plants are living things.	and grouped into six
Simple tests can be	questions about living	Read the temperature from		Common plants include	main groups: fish,
carried out by		record temperatures over	er a series of days.	the daisy, daffodil and	amphibians, reptiles,

following a set of	things and seasonal	Measure rainfall and carry out an investigation	grass. Trees are large,	birds, invertebrates
instructions.	change.	into the rain.	woody plants and are	and mammals.
			either evergreen or	
Identify and name	With support, gather	Know about weather forecasts and symbols.	deciduous	Group and sort a
what an object is	and record simple data			variety of common
made from, including	in a range of ways (data		Label and describe the	animals based on the
wood, plastic, glass,	tables, diagrams, Venn		basic structure of a	foods they eat.
metal, water and rock.	diagrams).		variety of common	
			plants.	Know that carnivores
A material is what an	Data can be recorded			eat other animals
object is made from.	and displayed in		Describe ways to stay	(meat), herbivores eat
Everyday materials	different ways,		safe in some familiar	plants and omnivores
include wood, plastic,	including tables,		situations.	eat other animals and
glass, metal, water,	pictograms and			plants.
rock, brick, paper and	drawings.		Describe how to care	
fabric.			for plants and animals,	Describe and compare
	Identify, compare,		including pets.	the structure of a
Identify and name	group and sort a variety			variety of common
what an object is	of common animals,		Understand living	animals (fish,
made from, including	including fish,		things need to be cared	amphibians, reptiles,
wood, plastic, glass,	amphibians, reptiles,		for in order for them to	birds and mammals,
metal, water and rock.	birds, invertebrates and		survive. They need	including pets).
	mammals, based on		water, food, warmth	
	observable features.		and shelter.	Describe ways to stay
Investigate and				safe in some familiar
describe the simple	Know animals are living		Describe, following	situations.
physical properties of	things. Animals can be		observation, how	
some everyday	sorted and grouped into		plants and animals	Describe how to care
materials, such as	six main groups: fish,		change over time.	for plants and animals,
hard or soft; stretchy	amphibians, reptiles,		All living things (plants	including pets.
or stiff; rough or	birds, invertebrates and		and animals) change	
smooth; opaque or	mammals.		over time as they grow	Living things need to be
transparent; bendy or			and mature.	cared for in order for
rigid and waterproof	Label and describe the		Investigate weather	them to survive. They
or not waterproof.	basic structures of a		using toys, models or	need water, food,
	variety of common		simple equipment.	warmth and shelter.
Materials have	animals, including fish,			
different properties,	amphibians, reptiles,		Simple equipment can	
such as hard or soft;	birds and mammals.		be used for measuring	
stretchy or stiff; rough			weather, such as	

or smooth; opaque or transparent; bendy or rigid; waterproof or not waterproof. Compare and group materials in a variety of ways, such as based on their physical properties; being natural or human- made and being	Understand different animal groups have some common body parts, such as eyes and a mouth, and some different body parts, such as fins or wings. Draw and label the main parts of the human body and say which body part is associated		measuring temperature with a thermometer; identifying wind direction and force with a windsock or measuring rainfall with a rain gauge.	
recyclable or non- recyclable. Materials can be grouped according to their properties.	It is important to stay safe. Some ways to stay safe include staying safe in strong sunlight), crossing roads), in the kitchen and with household chemicals			
Outcome: Know that objects are made from materials. Identify a range of everyday materials and their sources. Investigate the properties of materials and begin to recognise that a material's properties define its use.	Outcome: Know humans are a type of animal known as a mammal. Name and count body parts and identify similarities and differences. Learn about the senses, the body parts associated with each sense and their role in keeping us safe.	Outcome: Know the seasons, seasonal changes and typical seasonal weather and events. Measure the weather and understand the role of a meteorologist. Children begin to learn about the science of day and night and recognise that the seasons have varying day lengths in the UK.	Outcome: Know about wild and garden plants by exploring the local environment. Identify and describe the basic parts of plants and observe how they change over time.	Outcome: Know about animals, including fish, amphibians, reptiles, birds, mammals and invertebrates. Identify and describe their common structures, diets, and how animals should be cared for.

Autumn 1		Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Topic:		Topic:	Topic:	Topic:	Topic:	Topic:
Human Survi	vival	Habitats	Uses of materials	Plant survival	Animal Survival	Animal Survival
Concept:		Concept:	Concept:	Concept:	Concept:	Concept:
Skills and Kn	nowledge:	Skills and Knowledge:	Skills and Knowledge:	Skills and Knowledge:	Skills and Knowledge:	
Follow a set	of	Ask and answer	Use simple equipment	Begin to notice	Ask and answer scientific	questions about the
instructions	to	scientific questions	to measure and make	patterns and	world around them.	
perform a ra	ange of	about the world around	observations.	relationships in their	Questions can help us fin	d out about the world.
simple tests,	, making	them.		data and explain what	Begin to notice patterns	and relationships in their
simple predi	ictions for		Simple equipment is	they have done and	data and explain what th	ey have done and found
what might l	happen	Know that objects,	used to take	found out using simple	out using simple scientifi	c language.
and suggesti	ing ways	materials and living	measurements and	scientific language.	The results are information	on that has been found
to answer th	neir	things can be looked at,	observations. Examples		out from an investigation	and can be used to
questions.		compared and grouped	include timers, hand	The results are	answer a question.	
		according to their	lenses, metre sticks	information that has	Use a range of methods (tables, charts, diagrams
The local env	vironment	features.	and trundle wheels.	been found out from	and Venn diagrams) to ga	ather and record simple
is a habitat f	for living			an investigation and	data with some accuracy	
things and ca	an change	Compare and group	Compare the suitability	can be used to answer	Data can be recorded and	d displayed in different
during the se	easons.	things that are living,	of a range of everyday	a question.	ways, including tables, ch	narts, pictograms and
		dead or have never	materials for particular		drawings.	
Begin to not	ice	been alive.	uses, including wood,	Describe a range of	Make models with movin	
patterns and	t		metal, plastic, glass,	local habitats and	Models can have moving	parts that use levers,
relationships		Living things are those	brick, rock, paper and	habitats beyond their	sliders, wheels and axles.	
data and exp		that are alive. Dead	cardboard.	locality (beaches,	Describe typical UK seaso	•
they have do		things are those that		rainforests, deserts,	The UK has typical weath	
found out us		were once living but are	A material's physical	oceans and mountains)	seasons. For example, wi	
scientific lan	iguage.	no longer.	properties make it	and what all habitats	sometimes frosty, where	as summer is warm and
			suitable for particular	provide for the things	sometimes sunny.	
The results a		Describe a range of local	purposes, such as glass	that live there.	Describe a range of local	
information		habitats and habitats	for windows and brick		beyond their locality (bea	
been found of		beyond their locality	for building walls.	All living things live in a	deserts, oceans and mou	•
an investigat		(beaches, rainforests,		habitat to which they	habitats provide for the t	-
can be used	to answer	deserts, oceans and	Many materials are	are suited and it must	Local habitats include par	
a question.		mountains) and what all	used for more than one	provide everything	gardens. Habitats beyond	•
		habitats provide for the	purpose, such as metal	they need to survive.	beaches, rainforests, des	
Use a range		things that live there.	for cutlery and cars.	Identify and name a	mountains. All living thin	gs live in a habitat to
methods (tal	bles,			variety of plants and		

charts, diagrams and	Local habitats include	Describe how some	animals in a range of	which they are suited and it must provide
Venn diagrams) to	parks, woodland and	objects and materials	habitats and	everything they need to survive.
gather and record	gardens. Habitats	can be changed and	microhabitats.	Identify and name a variety of plants and animals
simple data with some	beyond the locality	how these changes can		in a range of habitats and microhabitats.
accuracy.	include beaches,	be desirable or	Observe and describe	A habitat is a place where a living thing lives. A
	rainforests, deserts,	undesirable.	how seeds and bulbs	microhabitat is a very small habitat.
Data can be recorded	oceans and mountains.		change over time as	Interpret and construct simple food chains to
and displayed in		Some objects and	they grow into mature	describe how living things depend on each other
different ways,	All living things live in a	materials can be	plants.	as a source of food.
including tables,	habitat to which they	changed by squashing,		Food chains show how living things depend on
charts, pictograms and	are suited and it must	bending, twisting,	Plants grow from seeds	one another for food. All food chains start with a
drawings.	provide everything they	stretching, heating,	and bulbs. Seeds and	plant, followed by animals that either eat the
	need to survive.	cooling, mixing and	bulbs need water and	plant or other animals.
Describe the stages of		being left to decay.	warmth to start	Describe the stages of human development
human development	Identify and name a		growing (germinate).	(baby, toddler, child, teenager, adult and elderly).
(baby, toddler, child,	variety of plants and		As the plant grows	Human offspring go through different stages as
teenager, adult and	animals in a range of		bigger, it develops	they grow to become adults. These include baby,
elderly).	habitats and		leaves and flowers.	toddler, child, teenager, adult and elderly.
	microhabitats.			Describe the basic life cycles of some familiar
Human offspring go			Describe how plants	animals (egg, caterpillar, pupa, butterfly; egg,
through different	A habitat is a place		need water, light and a	chick, chicken; spawn, tadpole, froglet, frog).
stages as they grow to	where a living thing		suitable temperature	Animals have offspring that grow into adults.
become adults. These	lives. A microhabitat is a		to grow and stay	Different animals have different stages of growth
include baby, toddler,	very small habitat.		healthy.	or life cycles.
child, teenager, adult	Interpret and construct		Diants need water light	Describe what humans need to survive.
and elderly.	Interpret and construct simple food chains to		Plants need water, light and a suitable	
Describe the basic life	describe how living			Humans need water, food, air and shelter to survive.
cycles of some familiar	things depend on each		temperature to grow and stay healthy.	survive.
animals (egg,	other as a source of		Without any one of	Explain how animals, including humans, need
caterpillar, pupa,	food.		these things, they will	water, food, air and shelter to survive.
butterfly; egg, chick,	1000.		die.	water, rood, an and sheller to survive.
chicken; spawn,	Food chains show how			Animals need water, food, air and shelter to
tadpole, froglet, frog).	living things depend on			survive. Their habitat must provide all these
	one another for food.			things.
Animals have offspring				
that grow into adults.	All food chains start			
	with a plant, followed			
	by animals that either			

Different animals have different stages of growth or life cycles. Describe the importance of a healthy lifestyle, including exercise, a balanced diet, good quality sleep and personal hygiene.	eat the plant or other animals. Describe what humans need to survive. Humans need water, food, air and shelter to survive. Explain how animals, including humans, need water, food, air and shelter to survive.			
Outcomes: Know the basic needs of humans for survival, including the importance of exercise, nutrition and good hygiene. Learn how human offspring grow and change over time into adulthood.	Outcomes: Learn about habitats and what a habitat needs to provide. Explore local habitats to identify and name living things and begin to understand how they depend on one another for food and shelter.	Outcomes: Know the uses of everyday materials and how materials' properties make them suitable or unsuitable for specific purposes. They begin to explore how materials can be changed.	Outcomes: Learn about the growth of plants from seeds and bulbs. Observe the growth of plants first hand, recording changes over time and identifying what plants need to grow and stay healthy.	Outcomes: Know about growth in animals by exploring the life cycles of some familiar animals. Build on learning about the survival of humans by identifying the basic needs of animals for survival, including food, water, air and shelter.

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Topic:		Topic:		Topic:	Topic:
Animal Nutrition and the Skeletal System		Forces and Magnets		Plant Nutrition and	Light and Shadows
				Reproduction	
Concept:		Concept:		Concept:	Concept:
Anatomy		Forces			Light
Skills and Knowled	ge	Skills and Knowledge		Skills and Knowledge	Skills and Knowledge
Begin to independe	ently plan, set up and carry out	Ask questions about th	e world around them and	Begin to choose which	Set up and carry out
a range of compara	ative and fair tests, making	explain that they can b	e answered in different	observations to make	some simple,
predictions and fol	lowing a method accurately.	ways.		and for how long and	comparative and fair
Scientific enquiries	can be set up and carried out	Questions can help us	find out about the world	make systematic,	tests, making
by following or pla	nning a method. A prediction is	and can be answered i	n different ways.	careful observations	predictions for what
a statement about	what might happen in an	Ask questions about th	e world around them and	and comparisons,	might happen.
investigation, base	d on some prior knowledge or	explain that they can b	e answered in different	identifying changes and	Tests can be set up and
understanding. A f	air test is one in which only	ways.		connections.	carried out by
one variable is cha	nged and all others remain	Questions can help us	find out about the world	An observation	following or planning a
constant.		and can be answered i	n different ways.	involves looking closely	set of instructions. A
		Set up and carry out so	me simple, comparative	at objects, materials	prediction is a best
Describe how hum	ans need the skeleton and	and fair tests, making	predictions for what might	and living things.	guess for what might
muscles for suppor	t, protection and movement.	happen.		Observations can be	happen in an
	leton and muscles for		l carried out by following	made regularly to	investigation based on
	t and protecting organs. Major		tructions. A prediction is a	identify changes over	some prior knowledge.
	n body include the skull, ribs,	best guess for what mi		time.	Begin to independently
	na, radius, pelvis, femur, tibia	-	some prior knowledge.	Name and describe the	plan, set up and carry
-	nuscle groups in the human	Make increasingly care		functions of the	out a range of
	iceps, triceps, abdominals,		differences and changes	different parts of	comparative and fair
	hamstrings, quadriceps,	and making simple cor		flowering plants (roots,	tests, making
	mius, latissimus dorsi and	An observation involve	v ,	stem, leaves and	predictions and
pectorals.			living things, which can be	flowers).	following a method
		compared and grouped features.	d according to their	The plant's roots	accurately.
	Identify and group animals that have no skeleton,			anchor the plant in the	Describe the
	n (endoskeleton) and an			ground and transport	differences between
external skeleton (-	Compare and group m	aterials based on their	water and minerals	dark and light and how
	skeletons for support,	magnetic properties.		from the ground to the	we need light to be
	tection. Endoskeletons are	Some materials have n		plant. The stem (or	able to see.
	some animals, such as	-	attracted to magnets. All	trunk) supports the	Dark is the absence of
	orses. Exoskeletons are those	U U	metals but not all metals	plant above the	light and we need light
found on the outsi	de of some animals, such as	are magnetic. Iron is a	magnetic metal.	ground. The leaves	to be able to see.

beetles and flies. Some animals have no skeleton,	Compare and group materials based on their	collect energy from the	Group and sort
such as slugs and jellyfish.	magnetic properties.	Sun and make food for	materials as being
Ask relevant scientific questions, independently,	Some materials have magnetic properties.	the plant. Flowers	reflective or non-
about the world around them and begin to	Magnetic materials are attracted to magnets. All	make seeds to produce	reflective.
identify how they can answer them.	magnetic materials are metals but not all metals	new plants.	Light can be reflected
	are magnetic. Iron is a magnetic metal.	Describe the	from different surfaces.
	Investigate and compare a range of magnets (bar,	requirements of plants	Some surfaces are poor
	horseshoe and floating) and explain that magnets	for life and growth (air,	reflectors, such as
	have two poles (north and south) and that	light, water, nutrients	some fabrics, while
	opposite poles attract each other, while like poles	and room to grow) and	other surfaces are good
	repel each other.	how they vary from	reflectors, such as
	Magnets have two poles (north and south).	plant to plant.	mirrors.
	Opposite poles (north and south) attract each	Plants need air, light,	Explain why light from
	other, while like poles (north and north, or south	water, minerals from	the Sun can be
	and south) repel each other.	the soil and room to	dangerous.
	Investigate and compare a range of magnets (bar,	grow, in order to	Light from the Sun is
	horseshoe and floating) and explain that magnets	survive. Different	damaging for vision
	have two poles (north and south) and that	plants have different	and the skin.
	opposite poles attract each other, while like poles	needs depending on	Protection from the
	repel each other.	their habitat. Examples	Sun includes sun
	Magnets have two poles (north and south).	include cacti, which	cream, sun hats,
	Opposite poles (north and south) attract each	need less water than is	sunglasses and staying
	other, while like poles (north and north, or south	typical, and ferns,	indoors or in the shade.
	and south) repel each other.	which can grow in	Explain, using words or
	Explain that an object will not move unless a push	lower light levels.	diagrams, how
	or pull force is applied, describing forces in action	Investigate how water	shadows are formed
	and whether the force requires direct contact or	is transported within	when a light source is
	whether the force can act at a distance (magnetic	plants.	blocked by an opaque
	force).	Water is transported in	object.
	An object will not move unless a pushing or	plants from the roots,	A shadow is formed
	pulling force is applied. Some forces require	through the stem and	when light from a light
	direct contact, whereas other forces can act at a	to the leaves, through	source, such as the
	distance, such as magnetic force.	tiny tubes called xylem.	Sun, is blocked by an
	Compare how objects move over surfaces made	Draw and label the life	object. Opaque objects
	from different materials.	cycle of a flowering	cast dark shadows.
	Friction is a force between two surfaces as they	plant.	Translucent objects
	move over each other. Friction slows down a	Flowers are important	cast pale shadows.
	moving object. Smooth surfaces usually generate	in the life cycle of	Transparent objects
	less friction than rough surfaces.	flowering plants. The	cast very pale shadows.
		processes of a plant's	

		life cycle include germination, flower production, pollination, seed formation and seed dispersal. Insects and the wind can transfer pollen from one plant to another (pollination). Animals, wind, water and explosions can disperse seeds away from the parent plant (seed dispersal).	Find patterns in the way shadows change during the day. Shadows change shape and size when the light source moves. For example, when the light source is high above the object, the shadow is short and when the light source is low down, the object's shadow is long.
Outcomes: Know the importance of nutrition for humans and other animals. Know the role of a skeleton and muscles and identify animals with different types of skeleton.	Outcomes: Learn about contact and non-contact forces, including friction and magnetism. Investigate frictional and magnetic forces, and identify parts of a magnet and magnetic materials.	Outcomes: This project teaches children about the requirements of plants for growth and survival. They describe the parts of flowering plants and relate structure to function, including the roots and stem for transporting water, leaves for making food and the flower for reproduction.	Outcomes: This project teaches children about light and dark. They investigate the phenomena of reflections and shadows, looking for patterns in collected data. The risks associated with the Sun are also explored.

-	pic: od and the Digestive	Topic:	Topic:	Topic:	Topic:	
	-			Topic.	Topic.	Topic:
Sys	+	Sound	States of matter	Grouping and	Electrical circuits and	Electrical circuits and
	stem			classifying	conductors	conductors
Cor	ncept:	Concept:	Concept:	Concept:	Concept:	Concept:
Hui	man anatomy	Sound	States of matter	Grouping and classifying	Electricity	Electricity
Ski	IIs and Knowledge	Skills and Knowledge	Skills and Knowledge	Skills and Knowledge	Skills and Knowledge	Skills and Knowledge
Des	scribe the purpose	Ask relevant scientific	Group and sort	Compare, sort and	Compare common	Compare common
of t	the digestive	questions,	materials into solids,	group living things	household equipment	household equipment
sys	stem, its main parts	independently, about	liquids or gases.	from a range of	and appliances that are	and appliances that are
and	d each of their	the world around them		environments, in a	and are not powered	and are not powered
fun	nctions.	and begin to identify	Observe and explain	variety of ways, based	by electricity.	by electricity.
		how they can answer	that some materials	on observable features	Construct operational	Construct operational
	entify the four	them.	change state when	and behaviour.	simple series circuits	simple series circuits
	ferent types of		they are heated or	Compare, sort and	using a range of	using a range of
	eth in humans and	Begin to independently	cooled and measure or	group living things	components and	components and
	ner animals, and	plan, set up and carry	research the	from a range of	switches for control.	switches for control.
	scribe their	out a range of	temperature in degrees	environments, in a	Predict and describe	Predict and describe
fun	nctions.	comparative and fair	Celsius (°C) at which	variety of ways, based	whether a circuit will	whether a circuit will
		tests, making	materials change state.	on observable features	work based on whether	work based on whether
	<pre>< relevant scientific </pre>	predictions and	Ask relevant scientific	and behaviour. Explain	or not the circuit is a	or not the circuit is a
	estions,	following a method	questions,	how unfamiliar	complete loop and has	complete loop and has
	lependently, about	accurately.	independently, about	habitats, such as a	a battery or cell.	a battery or cell.
	e world around	Evelain have several and	the world around them	mountain or ocean, can	Constant on eastimat	Constant on each is not
	em and begin to	Explain how sounds are	and begin to identify	change over time and	Construct operational	Construct operational
	entify how they can swer them.	made and heard using	how they can answer	what influences these	simple series circuits	simple series circuits
dis	swer them.	diagrams, models, written methods or	them. Describe the water	changes. Describe how	using a range of components and	using a range of components and
Cor	nstruct and	verbally.	cycle using words or	environments can	switches for control.	switches for control.
	erpret a variety of	verbally.	diagrams and explain	change due to human	Describe materials as	Describe materials as
	od chains and webs	Compare and find	the part played by	and natural influences	electrical conductors or	electrical conductors or
	show	patterns in the volume	evaporation and	and the impact this can	insulators.	insulators.
	erdependence and	of a sound, using a	condensation.	have on living things.	insulators.	
	w energy is passed	range of equipment,	condensation.	have on hims things.		
	over time.	such as musical				
011		instruments.				

Learn about the human digestive system. Explore the main parts, starting to animals' diets and construct food chains to show the flow of energy.	Outcomes:	Compare how the volume of a sound changes at different distances from the source.	Outcomes:	Outcomes:	Outcomes:	Quitcomes:
	human digestive system. Explore the main parts, starting with the mouth and teeth, identifying teeth types and their functions. Finally, link this learning to animals' diets and construct food chains to show the flow of	sound is made and how sound travels as vibrations through a medium to the ear. Learn about pitch and volume and find out how both can be	liquids and gases and their characteristic properties. Observe how materials change state as they are heated and cooled, and learn key terminology associated with these	living things, known as classification. Study the animal and plant kingdoms and use and create classification keys to identify living	appliances and safety. Construct simple series circuits and name their parts and functions, including switches, wires and cells. Investigate electrical conductors and insulators and identify common features of	children about electrical appliances and safety. They construct simple series circuits and name their parts and functions, including switches, wires and cells. They investigate electrical conductors and insulators and identify common features of

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Topic:	Topic:	Topic:	Topic:		Topic:
Earth and Space	Forces and Mechanisms	Living things and their	Animals including Huma	ns	Properties and
		Habitats			Changes of Materials
Concept:	Concept:	Concept:	Concept:	Concept:	Concept:
Earth and Space	Forces	Reproduction	Human Reproduction	Human Reproduction	Materials
Skills and Knowledge:	Skills and Knowledge:	Skills and Knowledge:	Skills and Knowledge:		Skills and Knowledge:
The Solar System is	Gather and record data	Describe the process of	Humans go through chara	acteristic stages as they	Compare and group
made up of the Sun	and results of increasing	human reproduction.	develop towards old age.	These stages include	everyday materials by
and everything that	complexity, selecting	Humans reproduce	baby, infant, toddler, chil	d, adolescent, young	their properties,
orbits around it. There	from a range of	sexually, which	adult, adult and senior cit	tizen. Puberty is the	including hardness,
are eight planets in	methods (scientific	involves two parents	transition between childh	nood and adulthood.	solubility,
our Solar System:	diagrams, labels,	(one female and one	Compare the life cycles o	f animals, including a	transparency,
Mercury, Venus,	classification keys,	male) and produces	mammal, an amphibian, a	an insect and a bird.	conductivity (electrical
Earth, Mars, Jupiter,	tables, graphs and	offspring that are	A life cycle is the series of	f changes in the life of a	and thermal) and
Saturn, Uranus and	models).	different from the	living thing and includes t	hese basic stages: birth,	magnetism.
Neptune. Earth orbits	Data can be recorded	parents.	growth, reproduction and		Materials can be
around the Sun and a	and displayed in	Group and sort plants	cycles include the stages: embryo, juvenile,		grouped according to
year (365.25 days) is	different ways,	by how they	adolescent and adult. Am	phibians' life cycles	their basic physical
the length of time it	including tables, bar and	reproduce.	include the stages: egg, la		properties. Properties
takes for Earth to	line charts, classification	Flowering plants	adolescent and adult. Sor		include hardness,
complete a full orbit.	keys and labelled	reproduce sexually.	beetles and bees) life cyc	_	solubility,
Describe or model the	diagrams.	The flower is essential	egg, larva, pupa and adul		transparency,
movement of the	Explain that objects fall	for sexual	include the stages: egg, b	aby, adolescent and	conductivity (electrical
Moon relative to	to Earth due to the	reproduction. Other	adult.		and thermal) and
Earth.	force of gravity.	plants reproduce	Describe the process of h		magnetism.
The Moon orbits	Gravity is a force of	asexually. Bulbs, corms	Humans reproduce sexua	•	Explain, following
Earth, completing a	attraction. Anything	and rhizomes are some	parents (one female and		observation, that some
full orbit every month	with a mass can exert a	parts used in asexual	offspring that are differen	•	substances (solutes)
(27.3 days).	gravitational pull on	reproduction in plants.	Group and sort plants by	• •	will dissolve in liquid
Describe the Sun,	another object. The	Label and draw the	Flowering plants reprodu	•	(solvents) to form a
Earth and Moon as	Earth's large mass	parts of a flower	is essential for sexual rep	•	solution and the solute
approximately	exerts a gravitational	involved in sexual	reproduce asexually. Bulk	•	can be recovered by
spherical bodies and	pull on all objects on	reproduction in plants	are some parts used in as	exual reproduction in	evaporating off the
use this knowledge to	Earth, making dropped	(stamen, filament,	plants.	C C C C C C C C C C	solvent.
understand the phases	objects fall to the	anther, pollen, carpel,	Label and draw the parts		Some materials
of the Moon and	ground.	stigma, style, ovary,	sexual reproduction in pla	• • • •	(solutes) will dissolve in
eclipses.	Compare and describe,	ovule and sepal).	anther, pollen, carpel, sti	gma, style, ovary, ovule	liquid (solvents) to
	using a range of toys,		and sepal).		form a solution. The

The Sun, Earth, Moon	models and natural	Parts of a flower	Parts of a flower include the stamen, filament,	solute can be
and the planets in our	objects, the effects of	include the stamen,	anther, pollen, carpel, stigma, style, ovary, ovule	recovered by
solar system are	water resistance, air	filament, anther,	and sepal. Pollination is when the male part of a	evaporating off the
roughly spherical. All	resistance and friction.	pollen, carpel, stigma,	plant (pollen) is carried, by wind, insects or other	solvent by heating.
planets are spherical	Friction, air resistance	style, ovary, ovule and	animals, to the female part of the plant (carpel).	Separate mixtures by
because their mass is	and water resistance	sepal. Pollination is	The pollen travels to the ovary, where it fertilises	filtering, sieving and
so large that they have	are forces that oppose	when the male part of	the ovules (eggs). Seeds are then produced,	evaporating.
their own force of	motion and slow down	a plant (pollen) is	which disperse far away from the parent plant	Some mixtures can be
gravity. This force of	moving objects. These	carried, by wind,	and grow new plants.	separated by filtering,
gravity pulls all of a	forces can be useful,	insects or other	Describe the life process of reproduction in some	sieving and
planet's material	such as bike brakes and	animals, to the female	plants and animals.	evaporating. Sieving
towards its centre,	parachutes, but	part of the plant	Reproduction is the process of producing	can be used to
which compresses it	sometimes we need to	(carpel). The pollen	offspring and is essential for the continued	separate large solids
into the most compact	minimise their effects,	travels to the ovary,	survival of a species. There are two types of	from liquids and some
shape – a sphere.	such as streamlining	where it fertilises the	reproduction: sexual and asexual. Sexual	solids from other
Use the idea of Earth's	boats and planes to	ovules (eggs). Seeds	reproduction involves two parents (one female	solids. Filtering can be
rotation to explain day	move through water or	are then produced,	and one male) and produces offspring that are	used to separate small
and night, and the	air more easily and	which disperse far	different from the parents. Asexual reproduction	solids from liquids.
Sun's apparent	using lubricants and ball	away from the parent	involves one parent and produces offspring that	Evaporating can be
movement across the	bearings between two	plant and grow new	is identical to the parent.	used to separate
sky.	surfaces to reduce	plants.	Gather and record data and results of increasing	dissolved solids from
As Earth orbits the	friction.	Describe the life	complexity, selecting from a range of methods	liquids.
Sun, it also spins on its	Describe and	process of	(scientific diagrams, labels, classification keys,	A material's properties
axis. It takes Earth a	demonstrate how	reproduction in some	tables, graphs and models).	dictate what it can be
day (24 hours) to	simple levers, gears and	plants and animals.	Data can be recorded and displayed in different	used for. For example,
complete a full spin.	pulleys assist the	Reproduction is the	ways, including tables, bar and line charts,	cooking pans are made
During the day, the	movement of objects.	process of producing	classification keys and labelled diagrams.	from metal, which is a
Sun appears to move	Mechanisms, such as	offspring and is	Use relevant scientific vocabulary to report on	good thermal
through the sky.	levers, pulleys and	essential for the	their findings, answer questions and justify their	conductor, allowing
However, this is due to	gears, give us a	continued survival of a	conclusions based on evidence collected, identify	heat to quickly transfer
the Earth rotating and	mechanical advantage.	species. There are two	improvements, further questions and predictions.	from the hob to the
not the Sun moving.	A mechanical advantage	types of reproduction:	The results are information, such as	contents of the pan.
Earth rotates to the	is a measurement of	sexual and asexual.	measurements or observations, that have been	Identify, demonstrate
east or, if viewed from	how much a simple	Sexual reproduction	collected during an investigation. A conclusion is	and compare reversible
above the North Pole,	machine multiplies the	involves two parents	an explanation of what has been discovered using	and irreversible
it rotates anti-	force that we put in.	(one female and one	evidence collected.	changes.
clockwise, which	The bigger the	male) and produces	Use relevant scientific vocabulary to report on	Irreversible changes
means the Sun rises in	mechanical advantage,	offspring that are	their findings, answer questions and justify their	include burning,
the east and sets in	the less force we need	different from the	conclusions based on evidence collected, identify	rusting, decaying and
the west. As Earth	to apply.	parents. Asexual	improvements, further questions and predictions.	chemical reactions.

rotates, different parts of it face the Sun, which brings what we call daytime. The part facing away is in shadow, which is night time.		reproduction involves one parent and produces offspring that is identical to the parent.	The results are information, such as measurements or observations, that have been collected during an investigation. A conclusion is an explanation of what has been discovered using evidence collected.	Identify, demonstrate and compare reversible and irreversible changes. Reversible changes include heating, cooling, melting, dissolving and evaporating.
Outcome: Know our Solar System and its spherical celestial bodies. Be able to describe the movements of the Earth and the other planets relative to the Sun, the Moon relative to Earth, and the Earth's rotation to explain day and night.	Outcome: Learn about the forces of gravity, air resistance, water resistance and friction, and explore their effects. Learn about mechanisms, their uses and how they allow a smaller effort to have a greater effect.	Outcome: Know the animal life cycles, including the human life cycle. Explore human growth and development to old age, including the changes experienced during puberty and human reproduction.	Outcome: Know the animal life cycles, including the human life cycle. Explore human growth and development to old age, including the changes experienced during puberty and human reproduction.	Outcome: Know about the wider properties of materials and their uses. Learn about mixtures and how they can be separated using sieving, filtration and evaporation. Study reversible and irreversible changes, and use common indicators to identify irreversible changes.

Autumn 1	Autumn 2	Spring	Summer
Topic:	Topic:	Topic:	Topic:
Evolution and	Light Theory	Electrical Circuits and Components	Circulatory System
Inheritance		Science Week and SATS	
Concept:	Concept:	Concept:	Concept:
	Light	Electricity	
Skills and Knowledge:	Skills and Knowledge:	Skills and Knowledge:	Skills and Knowledge:
Research unfamiliar	Identify that light	Plan and carry out a range of enquiries, including	Specialised equipment is used to take accurate
animals and plants	travels in straight lines.	writing methods, identifying variables and making	measurements in standard units. Examples
from a range of	Light travels in straight	predictions based on prior knowledge and	include data loggers plus sensors, such as light
habitats, deciding upon	lines.	understanding.	(lux), sound (dB) and temperature (°C); timers
and explaining where	Explain that, due to	A method is a set of clear instructions for how to	(seconds, minutes and hours); thermometers (°C)
they belong in the	how light travels, we	carry out a scientific investigation. A prediction is	and measuring tapes (millimetres, centimetres,
classification system.	cation system. can see things because a statement about what might happen in an		metres).
Living things are	they give out or reflect	investigation based on some prior knowledge or	Choose an appropriate approach to recording
classified into groups,	light into the eye.	understanding.	accurate results, including scientific diagrams,
according to common	Light sources give out	Explain how the brightness of a lamp or volume	labels, timelines, classification keys, tables,
observable	light. They can be	of a buzzer is affected by the number and voltage	models and graphs (bar, line and scatter), linking
characteristics and	natural or artificial.	of cells used in a circuit.	to mathematical knowledge.
based on similarities	When light hits an	Voltage is measured in volts (V) and is a measure	Data can be recorded and displayed in different
and differences.	object, it is absorbed,	of the difference in electrical energy between	ways, including tables, bar and line charts, scatter
Explain that living	scattered, reflected or	two parts of a circuit. The bigger the voltage, the	graphs, classification keys and labelled diagrams.
things have changed	a combination of all	more electrons are pushed through the circuit.	Report on and validate their findings, answer
	over time, using three. Light from a The more voltage flowing through a lamp,		questions and justify their methods, opinions and
		or motor, the brighter the lamp, the louder the	conclusions, and use their results to suggest
	evidence. light enter the eye. buzzer and the faster the motor.		improvements to their methodology, separate
Scientists compare	Vertebrates, such as	Compare and give reasons for variations in how	facts from opinions, pose further questions and
fossilised remains from	mammals, birds and	components in electrical circuits function	make predictions for what they might observe.
the past to living	reptiles, have a cornea	(brightness of lamps; volume of buzzers and	The results are information, such as
species that exist today	and lens that refracts	function of on or off switches).	measurements or observations, that have been
to hypothesise how	light that enters the	A circuit needs a power source, such as a battery	collected during an investigation. A conclusion is
living things have	eye and focuses it on	or cell, with wires connected to both the positive	an explanation of what has been discovered,
evolved over time.	the nerve tissue at the	and negative terminals. Other components	using correct, precise terminology and collected
Humans and apes	back of the eye, which	include lamps, buzzers or motors, which an	evidence.
share a common	is called the retina.	electric current passes through and affects a	

ancestry and evidence	Once light reaches the	response, such as lighting a lamp or turning a	Report on and validate their findings, answer
for this comes from	retina, it is transmitted	motor. When a switch is open, it creates a gap	questions and justify their methods, opinions and
fossil discoveries and	to the brain via the	and the current cannot travel around the circuit.	conclusions, and use their results to suggest
genetic comparison.	optic nerve.	When a switch is closed, it completes the circuit	improvements to their methodology, separate
Identify that living	Explain that, due to	and allows a current to flow all the way around it.	facts from opinions, pose further questions and
things produce	how light travels, we	Create circuits using a range of components and	make predictions for what they might observe.
offspring of the same	can see things because	record diagrammatically using the recognised	The results are information, such as
kind, although the	they give out or reflect	symbols for electrical components.	measurements or observations, that have been
offspring are not	light into the eye.	There are recognised symbols for different	collected during an investigation. A conclusion is
identical to either	Light sources give out	components of circuits.	an explanation of what has been discovered,
parent.	light. They can be		using correct, precise terminology and collected
Animals that sexually	natural or artificial.		evidence.
reproduce generate	When light hits an		Independently decide which observations to
new offspring of the	object, it is absorbed,		make, when and for how long and make
same kind by	scattered, reflected or		systematic and careful observations, using them
combining the genetic	a combination of all		to make comparisons, identify changes, classify
material of two	three. Light from a		and make links between cause and effect.
individuals. Each	source or reflected		Name and describe the purpose of the circulatory
offspring inherits two	light enter the eye.		system and the functions of the heart, blood
of every gene, one	Vertebrates, such as		vessels and blood.
from the female parent	mammals, birds and		The circulatory system includes the heart, blood
and one from the male	reptiles, have a cornea		vessels and blood. The heart pumps blood
parent.	and lens that refracts		through the blood vessels and around the body.
Describe how animals	light that enters the		There are three types of blood vessel: arteries,
and plants can be bred	eye and focuses it on		veins and capillaries. They each have a different-
to produce offspring	the nerve tissue at the		sized hole (lumen) and walls. The blood carries
with specific and	back of the eye, which		gases (oxygen and carbon dioxide), water and
desired characteristics	is called the retina.		nutrients to where they are needed. The red
(selective breeding).	Once light reaches the		blood cells carry oxygen and carbon dioxide
Animals and plants can	retina, it is transmitted		around the body. The blood also contains white
be bred to produce	to the brain via the		blood cells, which protect the body from
offspring with specific	optic nerve.		infection.
and desired	Explain, using words,		An observation involves looking closely at
characteristics. This is	diagrams or a model,		objects, materials and living things. Accurate
called selective	why shadows have the		observations can be made repeatedly or at
breeding. Examples	same shape as the		regular intervals to identify changes over time,
include cows that	objects that cast them		identify processes and make comparisons.
produce large	and how shadows can		Explain the impact of positive and negative
quantities of milk or	be changed.		lifestyle choices on the body.

crops that are disea resistant. Identify how animal and plants are adap to suit their environment, such a giraffes having long necks for feeding, an that adaptations ma lead to evolution. An adaptation is a physical or behaviou trait that allows a liv thing to survive and an ecological niche. Adaptations evolve natural selection. Favourable traits he an organism survive and pass on their ge to subsequent generations.	when an object blocks the passage of light. Apart from some distortion or fuzziness at the edges, shadows are the same shape as the object. The distortion or fuzziness depends on the position or type of light source.			Lifestyle choices can have a positive (exercise and eating healthily) or negative (drugs, smoking and alcohol) impact on the body. Explain that the circulatory system in animals transports oxygen, water and nutrients around the body. The role of the circulatory system is to transport oxygen, water and nutrients around the body. They are transported in blood and delivered to where they are needed. Report on and validate their findings, answer questions and justify their methods, opinions and conclusions, and use their results to suggest improvements to their methodology, separate facts from opinions, pose further questions and make predictions for what they might observe. The results are information, such as measurements or observations, that have been collected during an investigation. A conclusion is an explanation of what has been discovered, using correct, precise terminology and collected evidence.
Outcome:This project teacheschildren how livingthings on Earth havechanged over time ahow fossils provideevidence for this. Thelearn howcharacteristics arepassed from parentstheir offspring and hvariation in offspringcan affect theirsurvival, with chang(adaptations) possibleading to theevolution of a specie	e children about the way that light behaves, travelling in straight lines from a source or reflector, into the eye. They explore how we see light and colours, and phenomena associated with light, including shadows, reflections and refraction.	Outcome: This project teaches children about electrical circuits, their components and how they function. They recognise how the voltage of cells affects the output of a circuit and record circuits using standard symbols. It also teaches children about programmable devices, sensors and monitoring. They combine their learning	Outcome:	Outcome: This project teaches children about the transport role of the human circulatory system, its main parts and primary functions. They learn about healthy lifestyle choices and the effects of harmful substances on the body.

	to design and make	
	programmable home	
	devices.	